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STEP Mathematics II 2008: Solutions 
 
 
1        (i)  Given (xn+1 , yn + 1) = (xn

2 – yn
2 + 1,  2xn yn + 1), it is easier to remove the subscripts and  

 
      set  x2 – y2 + 1 = x  and  2xy + 1 = y. Then, identifying the y’s (or x’s) in each case, gives   

      y2 = x2 – x + 1   and   y = 
x21

1
−

. Eliminating the y’s leads to a polynomial equation in x;  

     namely,  4x4 – 8x3 + 9x2 – 5x = 0. 
 
      Noting the obvious factor of x, and then finding a second linear factor (e.g. by the factor  
      theorem) leads to  x(x – 1)(4x2 – 4x + 5) = 0. Here, the quadratic factor has no real roots, 
      since the discriminant, Δ = 42 – 4.4.5 = – 64 < 0. [Alternatively, one could note that    
      4x2 – 4x + 5 ≡ (2x – 1)2 + 4 > 0 ∀x. ] 
 
      The two values of x, and the corresponding values of y, gained by substituting these  x’s   

      into   y = 
x21

1
−

, are then  (x , y) = (0 , 1)  and  (1 , – 1) 

   
(ii) Now  (x1 , y1) = (– 1 , 1)  ⇒  (x2 , y2) = (a , b)  and  (x3 , y3) = (a2 – b2 + a , 2ab + b + 2). 
        Setting both  a2 – b2 + a = – 1  and  2ab + b + 2 = 1, so that the third term is equal to the  

      first, and identifying the b’s in each case, gives   b2 = a2 + a + 1   and   b = 
a21

1
+
−

.  

 
      One could go about this the long way, as before. However, it can be noted that the  
      algebra is the same as in (i), but with  a = – x  and  b = – y. Either way, we obtain the  
      two possible solution-pairs: (a , b) = (0 , – 1)  and  (– 1 , 1). 
 
      However, upon checking, the solution (– 1 , 1) actually gives rise to a constant sequence  
      (and remember that the working only required the third term to be the same as the first,  
      which doesn’t preclude the possibility that it is also the same as the second term!),  
      so we find that there is in fact just the one solution:  (a , b) = (0 , – 1).  
 
 
 

2 The correct partial fraction form for the given algebraic fraction is   

( ) 2222 1)1(11)1(
1

x
DCx

x
B

x
A

xx
x

+
+

+
−

+
−

≡
+−

+
, 

 although these can also be put together in other correct ways that don’t materially hinder  
 the progress of the solution. The standard procedure now is to multiply throughout by the  
 denominator of the LHS and compare coefficients or substitute in suitable values: which  
 leads to  A = 2

1  , B = 1 , C = 2
1  and  D = – 2

1 . 
 
 In order to apply the binomial theorem to these separate fractions, we now use index  
    notation to turn 

( ) ( ) ( ) 121221
22 11)1()1(

1)1(
1 −−−− ++++−+−≡

+−
+ xDxCxxBxA

xx
x

 

into the infinite series 

2
1 ∑

∞

=0n

nx  +  ∑
∞

=

+
0

)1(
n

nxn  + 2
1 ∑

∞

=

+−
0

12)1(
n

nn x   –  2
1 ∑

∞

=

−
0

2)1(
n

nn x . 

 
 It should be clear at this point that the last two of these series have odd/even powers only, 
 with alternating signs playing an extra part. The consequence of all this is that we need to  
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 examine cases for n modulo 4; i.e. depending upon whether n leaves a remainder of 0, 1, 2 
 or 3 when divided by 4. 
 
 For  n ≡ 0 (mod 4), the coefft. of xn is  2

1  + n + 1 + 0 – 2
1  = n + 1; 

 
 A1 for  n ≡ 1 (mod 4), coefft. of xn is  2

1  + n + 1 + 2
1  – 0 = n + 2; 

 
 A1 for  n ≡ 2 (mod 4), coefft. of xn is  2

1  + n + 1 + 0 + 2
1  = n + 2; 

 
 A1 for  n ≡ 3 (mod 4), coefft. of xn is  2

1  + n + 1 – 2
1  + 0 = n + 1.   

 

For the very final part of the question, we note that  
01.19.0

1.1
8181

11000
2 ×

= , is a cancelled form of 

our original expression, with x = 0.1 . (N.B. |x| < 1 assures the convergence of the infinite series 
forms). Substituting this value of x into 
 

1 + 3x + 4x2 + 4x3 + 5x4 + 7x5 + 8x6 + 8x7 + 9x8 + … 
 
then gives  1.344 578 90  to 8dp. 
 
 
 

3 (i)  Setting 
x
y

d
d  = 81x2 – 54x = 0  for TPs gives  (0 , 4)  and  ( )0,3

2   . You really ought to    

        know the shape of such a (“positive”) cubic, and it is customary to find the crossing- 
       points on the axes:  x = 0  gives  y = 4,  and  y = 0  leads to  x = – 1  and  x = 3

2 (twice). 
        [If you have been paying attention, this latter zero for y should come as no surprise!] 
       The graph now shows that,  for all  x ≥ 0,  y ≥ 0; which leads to the required result –  
        x2(1 – x) ≤ 27

4  – with just a little bit of re-arrangement. 
      
      In order to prove the result by contradiction (reduction ad absurdum), we first assume 
     that all three numbers exceed 27

4 . Then their product 
bc(1 – a)ca(1 – b)ab(1 – c) > ( 27

4 )3. 
      However, this product can be re-written in the form   

a2(1 – a). b2(1 – b.) c2(1 – c), 
       and the previous result guarantees that  x2(1 – x) ≤ 27

4  for each of a , b , c, from which  
      it follows that 

a2(1 – a). b2(1 – b.) c2(1 – c) ≤ ( 27
4 )3, 

      which is the required contradiction. Hence, at least one of the three numbers  bc(1 – a),  
      ca(1 – b), ab(1 – c) is less than, or equal to, 27

4 . 
 
(ii) Drawing the graph of  y = x – x2  (there are, of course, other suitable choices, such as  
      y = (2x – 1)2 for example) and showing that it has a maximum at  ( 2

1 , 4
1 ) gives   

x(1 – x) ≤ 4
1  for all x. 

      The assumption that  p(1 – q) , q(1 – p) > 4
1  ⇒  p(1 – p).q(1 – q) > ( 4

1 )2. 
      However, we know that  x(1 – x) ≤ 4

1  for each of p and q, and this gives us that 
p(1 – p).q(1 – q) ≤ ( 4

1 )2. 
       Hence, by contradiction, at least one of  p(1 – q) , q(1 – p) ≤ 4

1 .  
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4 Differentiating implicitly gives  0
d
d

d
d2 =⎟

⎠
⎞

⎜
⎝
⎛ +++ ay

x
yax

x
yyx , from which it follows that 

 

 
yax

ayx
x
y

+
+

−=  
d
d

 and hence the gradient of the normal is  
ayx

yax
+
+

. 

 Using  tan(A – B)  on this and  
x
y

 gives   tan θ  = 

ayx
yax

x
y

ayx
yax

x
y

+
+

×+

+
+

−

1
 = 22

22

yaxyaxyx
xyaxayxy

+++
−−+

. 

 
 However, we know that  x2 + y2 + 2axy = 1  from the curve’s eqn., and so   

tan θ  = 22 xya − . 

 

 (i)   Differentiating this w.r.t.  x  then gives  sec2θ 
xd

dθ
 = ⎟

⎠
⎞

⎜
⎝
⎛ − x

x
yya 2

d
d2 . Equating this to 

        zero and using 
yax

ayx
x
y

+
+

−=  
d
d

 from earlier then leads to   a(x2 + y2) + 2xy = 0 . 

 
 (ii)  Adding   x2 + y2 + 2axy = 1   and   a(x2 + y2) + 2xy = 0  gives  (1 + a)(x + y)2 = 1 . 
 
 (iii) However, subtracting these two eqns. instead gives  (1 – a)(y – x)2 = 1 , and  
        multiplying these two last results together yields  (1 – a2) (y2 – x2)2 = 1. 
 

        Finally, using  tan θ  = 22 xya −   ⇒  (y2 – x2)2 = 2

1
a

 tan2θ  , and substituting this 

        into the last result of (iii) then gives the required result:  tan θ  = 
21 a

a
−

. All that 

        remains is to justify taking the positive square root,  since tan θ  is | something |, which         
is necessarily non-negative. 
 
 
 

5 Using a well-known double-angle formula gives ∫ +

2/π

0
2sin1

2sin
x

x
dx = ∫ +

2/

0
2sin1

cossin2π

x
xx

 dx , and 

 this should suggest an obvious substitution: letting   s = sin x  turns this into the integral 

∫ +

1

0
21

2
s
s

 ds . 

 This is just a standard log. integral (the numerator being the derivative of the denominator), 
 leading to the answer  ln 2 .  
 
 Alternatively, one could use the identity  sin2x ≡ x2cos2

1
2
1 −  to end up with   

∫ −

2/π

0 2cos3
2sin2

x
x

dx. 

 This, again, gives a log. integral, but without the substitution. 
 

 A suitable substitution for the second integral is  c = cos x , which leads to  ∫ −

1

0
22

1
c

 dc .  
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 Now you can either attack this using partial fractions, or you could look up what is a fairly
 standard result in your formula booklet. In each case, you get (after a bit of careful log and  

 surd work)   ( )21ln
2

1
+  . 

 
 Now  (1 + 2 )5 = 1 + 5 2  + 20 + 20 2  + 20 + 4 2  = 41 + 29 2  (using the binomial 
 theorem, for instance), and  

41 + 29 2  < 99  ⇔  29 2  < 58  ⇔  2  < 2 , 
 which is obviously the case. Also, 1.96 < 2  ⇒  1.4 < 2 . Thereafter, an argument such as 

21.4 > 1 + 2   ⇔  27 > (1 + 2 )5  ⇔  128 > 41 + 29 2    
             ⇔      87 > 29 2      ⇔   3  > 2       

 from which it follows that 2122 5
72 +>> . 

 

 Taking logs in this result then gives 2  ln 2 > ln(1 + 2 )  ⇒  ( )21ln
2

12ln +> ; and  

∫ +

2/π

0
2sin1

2sin
x

x
dx > ∫ +

2/

0
2sin1

sinπ

x
x

dx . 

 
 
 
6 (i)   Firstly,  cos x  has period 2π  ⇒  cos (2x)  has period π;  

       and  sin x  has period 2π  ⇒  sin ⎟
⎠
⎞

⎜
⎝
⎛

2
3x

 has period 3
4 π. 

       Then  f(x) = cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  + sin ⎟

⎠
⎞

⎜
⎝
⎛ −

4
π

2
3x

  has period  4π = lcm(π , 3
4 π). 

 
 (ii)  Any approach here is going to require the use of some trig. identity work. The most  

       straightforward is to note that  cos θθ sin
2

−=⎟
⎠
⎞

⎜
⎝
⎛ +
π

   so that  f(x) = 0 reduces to 

       cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  = cos ⎟

⎠
⎞

⎜
⎝
⎛ +

42
3 πx

, from which it follows that   ⎟
⎠
⎞

⎜
⎝
⎛ +±=+

42
32

3
2 πxnπx π  

      where n is an integer, using the symmetric and periodic properties of the cosine curve. 
      Taking suitable values of n, so that x is in the required interval, leads to the answers 

        x = – 
42

31π
 (from n = – 1, with the – sign),  x = – 

6
π

 (n = 0, with both + and – signs),   

       x = 
42

17π
 (n = 1, – sign)  and  x = 

42
41π

 (n = 2, – sign). 

       Since  x = – 
6
π

 is a repeated root (occurring twice in the above list), the curve of 

       y = f(x)  touches the x-axis at this point. 
 
       For those who are aware of the results that appear in all the formula books, but which  
       seem to be on the edge of the various syllabuses, that I know by the title of the Sum- 

       and-Product Formulae, such as  cos A + cos B ≡ ⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +

2
cos

2
cos2 BABA

, there is a  

       second straightforward approach available here. For example, noting that 

      cos θθ sin
2

=⎟
⎠
⎞

⎜
⎝
⎛ −
π

  gives  cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  + cos ⎟

⎠
⎞

⎜
⎝
⎛ −

2
3

4
3 xπ

 = 0  which (from the above  
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      identity) then gives  2 cos ⎟
⎠
⎞

⎜
⎝
⎛ +

24
13

4
πx

cos ⎟
⎠
⎞

⎜
⎝
⎛ −

24
5

4
7 πx

 = 0, and setting each of these two        

cosine terms equal to zero, in turn, yields the same values of x as before, including the       repeat. 
 

 (iii) The key observation here is that  y = 2  if and only if both  cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  = 1   and    

        sin ⎟
⎠
⎞

⎜
⎝
⎛ −

4
π

2
3x

 = 1, simultaneously. So we must solve  

        cos ⎟
⎠
⎞

⎜
⎝
⎛ +

3
π2x  = 1  ⇒  

3
2 πx +  = 0 , 2π , 4π , … , giving  

6
5πx =  , 

6
11π

 , … ;  and 

        sin ⎟
⎠
⎞

⎜
⎝
⎛ −

4
π

2
3x

 = 1  ⇒  =−
42

3 πx
 

2
π

 , 
2

5π
 , … , giving 

2
πx =  , 

6
11π

 , … . 

        Both equations are satisfied when  x = 
6

11π
 , and this is the required answer.   

 
 
 

7 (i)   Differentiating  y = u 21 x+   gives  
x
y

d
d

 = u. .1
1

2

2
x

x
x

++
+ x

u
d
d

; so that 

  

        21d
d 1

x
xxy

x
y

y +
+=  becomes  

⎭
⎬
⎫

⎩
⎨
⎧

++
++ x

ux
x

ux
xu d

d.1
11

1 2

22
 = 2

2

1
1

x
xxxu
+

++ . 

        Simplifying and cancelling the common term on both sides leads to 

.1
u x

u
d
d

 = 21 xxu + . 

 
        This is a standard form for a first-order differential equation, involving the separation  
        of variables and integration:  

.1
2∫ u

du = ∫ + 21 xx dx  ⇒  ( ) 2
321

3
11 x

u
+=−  (+ C). 

        Using  x = 0 , y = 1 (u = 1)  to find C leads to the final answer,  y = 
( ) 2

32

2

14
13

x
x

+−

+
. 

 
 (ii)  The key here is to choose the appropriate function of x. If you have really got a feel for  
        what has happened in the previous bit of the question, then this isn’t too demanding. If  
        you haven’t really grasped fully what’s going on then you may well need to try one or  

        two possibilities first. The product that needs to be identified here is  y = u ( ) 3
131 x+ .  

       Once you have found this, the process of (i) pretty much repeats itself.  
 

      
x
y

d
d

 = u. ( ) ( ) 3
1

3
2 332 11 xxx +++

−

x
u

d
d

 means that  3

2
2

1d
d 1

x
xyx

x
y

y +
+=   becomes   

.1
u x

u
d
d

 = ( ) 3
132 1 xux + . 

 
        Separating variables and integrating:  

.1
2∫ u

du = ( )∫ + 3
132 1 xx dx  = ( ) 3

431
4
11 x

u
+=−  (+ C) ; 
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        and  x = 0 , y = 1 (u = 1)  gives C  and the answer   y = 
( )
( ) 3

4

3
1

3

3

15
14

x
x
+−

+
 .  

              
 (iii) Note that the question didn’t actually require you to simplify the two answers in (i) and  
        (ii), but doing so certainly enables you to have a better idea as to how to generalise the  
       results: 

y = 
( )
( ) nn

nn

xn

xn
11

1

1)2(

1)1(
+

+−+

++
. 

 
 
 
8 It is never a bad idea to start this sort of question with a reasonably accurate diagram …  
 something along the lines of 

               A 
 
              P 
       Q 
  O 
 
         B 
 
The first result is an example of what is known as the Ratio Theorem: 

AP : PB = 1 – λ : λ  ⇒  p = λa + (1 – λ)b . 
Alternatively, it can be deduced from the standard approach to the vector equation of a  straight 

line, via  r = a + λ(b – a).    
 
Using the scalar product twice then gives 

a • p = λa2 + (1 – λ)(a • b)  and  b • p = λ(a • b) + (1 – λ) b2 . 

Equating these two expressions for  cos θ , 
bpap

pbpa •
=

•
, re-arranging and collecting up 

like terms, then gives   ab{λ(a + b) – b} = a • b {λ(a + b) – b}. There are two possible 
 consequences to this statement, and both of them should be considered. Either ab = a • b,  
 which gives  cos 2θ  = 1,  θ  = 0, A = B and violates the non-collinearity of O, A & B; or  the 
bracketed factor on each side is zero, which gives 

λ = 
ba

b
+

. 

 
However, if you know the Angle Bisector Theorem, the working is short-circuited  quite  
dramatically: 

OB
OA

PB
AP

=   ⇒  
b
a

AB
AB

=
−

)(
))(1(

λ
λ

  ⇒  b – bλ = aλ  ⇒  λ = 
ba

b
+

. 

 
Next,     AQ : QB = λ : 1 – λ   ⇒  q = (1 – λ)a + λb.  
Then 
       OQ2 = q • q  = (1 – λ)2 a2 + λ2 b2 + 2λ(1 – λ) a • b 
 
      and   OP2 = p • p  = (1 – λ)2 b2 + λ2 a2 + 2λ(1 – λ) a • b . 
[N.B. This working can also be done by the Cosine Rule.] 
Subtracting: 
    OQ2 – OP2 = (b2 – a2) [λ2 – (1 – λ)2] = (b2 – a2) (2λ – 1)  
and, substituting λ in terms of a and b into this expression, gives the required answer 

  = (b – a)(b + a) × 
ab
ab

+
−

 = (b – a)2. 

 θ 
  θ 
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9 (i)  Using a modified version of the trajectory equation (which you are encouraged to have  

       learnt),   y = h + x tan α – 2

2

2u
gx

sec2α , and substituting in  g = 10  and  u = 40  gives    

y = h + x tan α – 
320

2gx
sec2α . 

 
       Setting  x = 20  and  y = 0  into this trajectory equation and using one of the well-    
        known Pythagorean trig. identities (sec2α = 1 + tan2α) leads to the quadratic equation 

5t2 – 80t – (4h – 5) = 0 
       in  t = tan α.  
       [Note that you could have substituted  x = 20  and  y = – h  into the unmodified 
       trajectory equation and still got the same result here.]  
       Solving, using the quadratic formula, and simplifying then gives 

tan α = h5
4638 +± . 

 
       We reject  tan α = h5

4638 ++ , since this gives a very high angle of projection 
       and hence a much greater time for the ball to arrive at the stumps. Now, since α is     

       small,  cos α ≈ 1, and the time of flight = 
αcosu

x
 = 

2
1

αcos2
1

≈ . 

 
 (ii)  h > 4

5   for  tan α = 8 – ε+64 ) < 0.  
 
 (iii) Now  h = 2.5  ⇒  tan α = 8 – 164 +  = 8 – 8 ( ) 2

1

64
11+ . The Binomial Theorem then 

       allows us to expand the bracket, and it seems reasonable to take just the first term 
       past the 1:  tan α = 8 – 8 ( ).....1 128

1 ++ ,  so that  tan α ≈ – 16
1 .  [We can ignore the  

       minus sign, since this just tells us that the projection is below the horizontal.] 
       Using   tan α ≈ α  for small-angles, and converting from radians into degrees using 
       the conversion factor  180/π ≈ 57.3  then gives  α ≈ 3.6o . 
 
 
10 On this sort of question, a good, clear diagram is almost essential, even when it is not asked-for. 
         A     M           D 
        
           α 
  a          w            a – y  
               γ 
                   Y 
       a      u 
        v           y 
 
                β 
        B         x           X  (b – x)   N  b          C 
 
   (i) The two fundamental principles involved in collisions are the Conservation of Linear  
       Momentum (CLM) and Newton’s Experimental Law of Restitution (NEL or NLR). 
          For the collision at X, applying  CLM || BC   ⇒  mu sin α = mv cos β 
                         ..       NEL   ⇒   eu cos α = v sin β  
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       Dividing these two gives  tan β = e cot α   or   tan α tan β = e . 
        At Y, “similarly”, we have  tan β tan γ = e . Hence  α = γ  (since all angles are acute). 
 
    (ii) A good approach here is to use similar Δs, and a bit of sensible labelling is in order  
       (see the diagram). Let BX = x  (XN = b – x)   and   CY = y  (DY = a – y). Then  

tan α = 
a
x

,    tan β = 
xb

y
−2

,    tan γ = 
ya

b
−

. 

       Using  α = γ  to find (e.g) y in terms of a, b, x  ⇒  ax – xy= ab  ⇒  y = 
x

bxa )( −
. 

       Next, we use the result  tan α tan β = e  from earlier to get x in terms of a and b: 

                    e
xb

xbxa
a
x

=
−
−

×
2

/)(
  ⇒  x – b = 2be – ex  ⇒  x = 

e
eb

+
+

1
)21(

, 

       from which it follows that   tan α = 
)1(
)21(

ea
eb

+
+

 . 

 
       At this stage, some sort of inequality argument needs to be considered, and a couple of  
       obvious approaches might occur to you. 

       I   tan α = 
a
b

ea
be

a
b

ea
eb

>
+

+=
+
+

)1()1(
)21(

  and  tan α = 
a
b

ea
be

a
b

ea
eb 2

)1(
2

)1(
)21(

<
+

−=
+
+

    

            give  
a
b

a
b 2αtan << ;  and the shot is possible, with the ball striking BC between N  

            and C, whatever the value of e . 

       II  As  e → 0,  tan α → +
a
b

  and  as  e → 1,  tan α → −
a
b

2
3

, so that 

            
a
b

a
b

2
3αtan << ;  and the shot is possible, with the ball striking BC between N and  

         the midpoint of NC, whatever the value of e.  
 
 
 
 

 
(iii) There are two possible approaches to this final part. The first, much longer version,  
        involves squaring and adding the eqns. for the collision at X, and then again at Y, to  
        get  

v2 = u2(sin2α + e2cos2α)   and   w2 = v2(sin2β + e2cos2β). 
        Now, noting that the initial KE = 2

2
1 mu  and the final KE = 2

2
1 mw , the fraction of 

        KE lost is  2

2

2
2
1

2
2
12

2
1

1
u
w

mu
mwmu

−=
−

= 1 – (sin2α + e2 cos2α)(sin2β + e2cos2β) 

                = 1 – 
β

β
α

α
2

22

2

22

sec
tan

sec
tan ee +

×
+

. 

        From here, we use  tan α tan β = e  and  sec2α = 1 + tan2α  to get 

        1 – 22

222

2

22

/1
/

1 te
ete

t
et

+
+

×
+
+

= 1 – 
( )

( ) 222

222

2

22

/
/1

1 tet
tte

t
et

+
+

×
+
+

= 1 – e2 , as required.  

 
        However, it is very much quicker to note the following: 

  At X, the ↑-component of the ball’s velocity becomes e × initial ↑-component ,  
 and 

   at Y, the →-component of the ball’s velocity becomes e × initial →-component. 
 Hence its final velocity is  eu  and the fraction of the KE lost is then 
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2
2
1

22
2
12

2
1

mu
umemu −

 = 1 – e2. 

 
 
 
      R 
11          F    
 
               P 
 
    b           F     a 
     R 
 
 
         θ 
 
           mg        kmg 
 
 Once again, a good, clear diagram is an important starting-point, and the above diagram  shows the 
relevant forces – labelled using standard notations – along with the accelerations  of P down the sloping 
surface of the wedge (a) and the wedge itself along the plane (b). 
 

 (i)  Noting the acceleration components of P are  a cosθ  – b  (→)   and   a sin θ  (↓), we  
      employ Newton’s Second Law as follows: 
      N2L → for P  m(a cosθ  – b) = R sinθ – F cosθ 
      N2L ↓ for P        ma sin θ   = mg – F sinθ – R cosθ 
       N2L ← for wedge               kmb   = R sinθ – F cosθ  

      From which it follows that   a cosθ  – b = kb  ⇒  b = 
1

cos
+k

a θ
. 

 
       Alternatively, one could use N2L to note P’s → accln. component  and also the 
       wedge’s accln. ←, but instead use  
       CLM ↔   km bt = m (a cosθ  – b)t (where t = time from release) 
       and this again leads to the above result for b. 
 
      Now, for P to move at 45o to the horizontal,  a cosθ – b = a sinθ . Then 

b = a(cosθ  – sinθ ) = 
1

cos
+k

a θ
 

      ⇒  (k + 1)( cosθ  – sinθ) = cosθ   ⇒  k + 1 – (k + 1) tanθ  = 1   and   tanθ  = 
1+k

k
.  

 
      When  k = 3, tanθ = 4

3 , sinθ = 5
3 , cosθ = 5

4   and  b = 5
1 a . 

      Substituting these into the first two equations of motion from (i), along with the use of  
      the Friction Law (in motion), which assumes that F = μR , gives 

                m( 5
4 a – b) = 5

3 R – 5
4 F   or   3R – 4F = m(4a – 5b) = 3ma  ⇒  R(3 – 4μ) = 3ma 

        and 
                5

3 ma  = mg – 5
3 F – 5

4 R   or   4R + 3F = m(5g – 3a)  ⇒  R(4 + 3μ) = 5mg – 3ma. 
        Dividing, or equating for R :    

                
a

ag
3

35
43
34 −

=
−
+

μ
μ

 ⇒  (12 + 9μ)a = 5(3 – 4μ)g – (9 – 12μ)a  ⇒  a = 
)7(3
)43(5

μ
μ

−
− g

. 

 
 (ii) Finally, if  tanθ  ≤ μ ,  then both P and the wedge remain stationary.  So, technically,  
      the answer is “nothing”. 
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12 Clearly,  X ∈ {0 , 1 , 2 , 3} and working out the corresponding probabilities is a good thing to do at 

some point in this question (although it can, of course, be done numerically later when a value for p 
has been found). 

 p(X = 0) = (1 – p)(1 – 3
1 p) (1 – p2)  

 p(X = 1) = p(1 – 3
1 p)(1 – p2) + (1 – p) 3

1 p(1 – p2) + (1 – p)(1 – 3
1 p)p2  

                       = p(1 – p)( 3
4  + 3

5 p – p2)   
 p(X = 2) = p. 3

1 p(1 – p2) + p(1 – 3
1 p)p2 + (1 – p) 3

1 p.p2    
         = 3

1 p2(1 + 4p – 3p2)               
 p(X = 3) = 3

1 p4  
 [Of course, one of these could be deduced on a (1 – the sum of the rest) basis, but that can   
 always be left as useful check on the correctness of your working, if you so wish.] 
 
 Then  E(X) = ∑ )(. xpx  = 0 + p(1 – p)( 3

4  + 3
5 p – p2) + 3

2 p2(1 + 4p – 3p2) + p4         

              = 3
4 p + p2 

 Alternatively, if you have done a little bit of expectation algebra, it is clear that  
E(X) = 2

3
42

3
1)( pppppXE i +=++=∑ . 

Equating this to  3
4   ⇒  0 = 3p2 + 4p – 4  ⇒  0 = (3p – 2)(p + 2), and since  0 < p < 1  it follows that  

p = 3
2 .   

 
 In the final part, you will need either (p0 and p1) or  (p2 and p3): 

p0 = 243
35    and   p1 = 243

108  or p2 = 243
84    and   p3 = 243

16 . 
Next, a careful statement of cases is important (with, I hope, obvious notation): 
p(correct pronouncement) = p(G and ≥ 2 judges say G) + p(NG and ≤ 1 judges say G) 

           = t . 
243
100

 + (1 – t) . 
243
143

 = 
243

43143 t−
 

 Equating this to 2
1 and solving for t  ⇒  243 = 286 – 86t  ⇒  86t = 43  ⇒  t =  2

1 .   
        

Alternatively, let  p(King pronounces guilty) = q .  
Then  “King correct” = “King pronounces guilty and defendant is guilty”  
    or “King pronounces not guilty and defendant is not guilty” 
so that  p(King correct) = qt + (1 – q)(1 – t). 
Setting  qt + (1 – q)(1 – t) = 2

1   ⇔  (2q – 1)(2t – 1) = 0 , and since q is not identically equal  to 

2
1 ,  t = 2

1 .  
 
 
 
13 (i)  p(B in bag P) = p(B not chosen draw 1) + p(B chosen draw 1 and draw 2) 

       = 
kn

k
n
k

n
k

+
×+⎟

⎠
⎞

⎜
⎝
⎛ −    1   

       = ( )2))((
)(

1 kknkn
knn

++−
+

 

       = 
kn

n
+

     

      This has its maximum value of 1 for  k = 0, and for no other values of k. Since 

      p = 
kn

k
+

−    1  ≤ 1  and for  k = 0, p = 1  but  k > 0 for all  p < 1). 
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(ii) p(Bs in same bag) = p(B1 chosen on D1 and neither chosen on D2)  
    + p(B1 chosen on D1 and both chosen on D2) 
     + p(B1 not chosen on D1 and B2 chosen on D2) 
 

     = 
kn

k
n
k

C
C

n
k

C
C

n
k

k
kn

k
kn

k
kn

k
kn

+
×⎟
⎠
⎞

⎜
⎝
⎛ −+×+× +

−
−+

+

−+

12
22

 

 
      Notice that, although the nCr terms look very clumsy, they are actually quite simple  
     once all the cancelling of common factors has been undertaken. 
 

    = 
)(
)(

)1)((
)1(

)1)((
)1(

knn
knk

knkn
kk

n
k

knkn
nn

n
k

+
−

+
−++

−
×+

−++
−

×  

 

    = 
⎭
⎬
⎫

⎩
⎨
⎧

−++
+−−−++−+−

)1)((
)( 2222

knkn
kknknnknkknn

n
k

 

 

    = 
)1)((

)1(2
−++

−
knkn

nk
       

 
      Differentiating this expression gives 

      
k
p

d
d

 = 
[ ]2

22

)1)((
)122()1(2)1(2)2(

−++
−+×−−−×−−++

knkn
knnknknknkn

 

 
  = 0  when  n2 + 2nk + k2 – n – k = 2nk + 2k2 – k  since n > 2,  n – 1 ≠ 0 
 
      ⇒  k2 = n(n – 1) . 
      Now there is nothing that guarantees that k is going to be an integer (quite the contrary,  
     in fact), so we should look to the integers either side of the (positive) square root of       
     n(n – 1): 

k = [ ])1( −nn    and   k = [ ])1( −nn  + 1 . 

      In fact, since  n2 – n = (n – ½ )2 – ¼ ,  [ ])2 nn −  = n – 1  and we find that, 
 

when  k = n – 1 ,   p = 
12

1
)1(2)12(

)1(2 2

−
−

=
−−

−
n

n
nn

n
  

 

and when  k = n ,  p = 
12

1
)12)(2(

)1(2
−
−

=
−

−
n

n
nn

nn
  also, 

 
and  k = n – 1 , n  are the two values required.            
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